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Abstract—Skin lesion pigmentation area from surface, or, 
epi-illumination (ELM) images and blood volume area from 
transillumination (TLM) images are useful features to aid a 
dermatologist in the diagnosis of melanoma and other skin 
cancers in early curable stages. However, segmentation of these 
areas is difficult. In this work, we present an automatic 
segmentation tool for ELM and TLM images that also provides 
additional choices for user selection and interaction with 
adaptive learning. Our tool uses a combination of k-means 
clustering, wavelet analysis, and morphological operations to 
segment the lesion and blood volume, and then presents the user 
with six segmentation suggestions for both ELM and TLM 
images. The final selection of segmentation boundary may then 
be iteratively improved through scoring by multiple users. The 
ratio of TLM to ELM segmented areas is an indicator of 
dysplasia in skin lesions for detection of skin cancers, and this 
ratio is found to show a statistically significant trend in 
association with lesion dysplasia on a set of 81 pathologically 
validated lesions (p = 0.0058). We then present a support vector 
machine classifier using the results from the interactive 
segmentation method along with ratio, color, texture, and shape 
features to characterize skin lesions into three degrees of 
dysplasia with promising accuracy. 

I. INTRODUCTION 

F detected early, the survival rate of skin cancer is quite 
high. The Nevoscope is a novel device developed for the 

non-invasive imaging of suspicious skin lesions through 
surface reflectance based epi-illumination (ELM) and diffuse 
reflectance based transillumination (TLM). In TLM imaging, 
surface illumination is blocked. Light photons enter the skin 
at an angle through a fiber-optic directed illumination ring 
source placed against the skin.  Transillumination imaging 
using the Nevoscope is advantageous because light is 
directed beneath the skin, which allows the visualization of 
subsurface structures in the diffuse backscattered image. 
Figure 1 shows the difference between the pathways of light 
in TLM and ELM imaging. 

TLM images of skin lesions are able to show the vascular 
blood flow information [1]. Cancerous lesions tend to 
require more blood to supply the cancerous cells with 
nutrients, and therefore, the capillary bed beneath the lesion 
will be larger and more saturated with blood than the 
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surrounding healthy tissue. Thus, the size of the subsurface 
blood volume can serve as an indicator of cancerous or pre-
cancerous lesions in additional to the conventional method of 
observing the size and shape of the lesion on the surface, 
visible through ELM imaging.  

If the area of the lesion blood volume and the area of the 
lesion surface pigmentation can be segmented out, then these 
areas may serve as useful features to help classify various 
types of lesions, such as melanoma. These features may also 
help to classify the various stages of cancer progression, 
from mild to moderate and severe. However, a completely 
automatic computer based segmentation which is reliably 
accurate for many different types of lesions and sets of 
images is difficult to construct. Instead, we present an 
interactive segmentation tool which shows the user six 
choices for both the ELM and TLM images. The user may 
then select which segmentation boundary best fits the lesion, 
and these boundaries are stored for later analysis and 
classification using a Support Vector Machine. 

II. METHODS 

To test our interactive algorithm, we acquired a set of ELM 
and TLM images for skin lesions marked out by a 
dermatologist. The objective of our interactive algorithm is 
thus two-fold: 1) to segment out the lesion boundary in the 
cross-polarized, surface illuminated (ELM) image; and 2) to 
segment out the subsurface blood volume boundary of the 
lesion in the transilluminated (TLM) image. Segmentation 
methods include k-means clustering and wavelet analysis. 
The use of a priori knowledge is also essential for reliable 
segmentation. 
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Figure 1: (a) Transillumination Imaging. (b) Epi-illumination Imaging 
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A. Artifact Removal 

Like many real world problems, the images are not perfect. 
Most notably, a large percentage of the images contain one 
or more “black marks,” that is, dark markings made by a pen 
or marker on the skin where the dermatologist indicated 
which areas should be imaged. Due to their dark nature, such 
marks may easily be mistaken for lesions by the 
segmentation algorithm. Hence, these marks must be 
detected and segmented themselves first, and then removed 
from any subsequent lesion boundary analysis.  

The black mark areas are detected through wavelet 
analysis. Wavelet analysis is a powerful multi-resolution tool 
used to decompose an image into variable spatial and 
frequency resolutions [2]. Decomposition using the 
Daubechies D4 is performed in both spatial dimensions of a 
digital image. It was found that the marks were easily 
segmented in the ELM images by a thresholding and 
morphological processing of the high-high wavelet 
coefficients (high frequency in the x-dimension, and high 
frequency in the y-dimension) of the saturation channel in 
the Hue, Saturation, Intensity (HSV) representation of the 
ELM image (see Figure 2 for an example). Likewise, the 
black marks may be reliably segmented in the TLM image 
through similar thresholding and morphological processing 
of the high-high wavelet coefficients of the red channel of 
the TLM image [3]. 

B. Background and Color Correction 

The original TLM images are largely saturated red in 
color, and this makes it difficult to distinguish subtle 
intensity features which may be of value to determine the 
blood volume. In addition, because of the physical nature of 
the Nevoscope as a ring source around the lesion, regions 
close to the light appear brighter in the image, while the 
center of the image (furthest from the light source) appears 
darker. This dark field effect is dependent on the optical 
properties of the patient as well as the contact and 
positioning of the Nevoscope on the individual’s skin. As a 
result, the background characteristics of the TLM image can 
understandably vary significantly between images and 
patients. Ideally, a background image of skin without the 
lesion should be taken on each patient, but this was not 
available in our image set. Thus, the background must be 
estimated mathematically for correction. 

We performed an initial rough segmentation of the mark-
removed TLM image into two classes: a background class 
and a foreground class. Next, we take the pixels in the 
background class and fit a two dimensional, second-order 
polynomial curve to this data. Given this background 
estimate, we can then correct the TLM image with respect to 
this background, thus flattening out the intensity of the skin 
surrounding the lesion and heightening the contrast between 
the blood volume and the surrounding tissue. This procedure 
is performed on each color channel separately. If IR and IG 
are the original red and green channels of the TLM image 
respectively, and BGR and BGG are the estimated red and 
green channel background curves, then the background and 
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Division of the image by the background estimate provides 
the needed background correction while the constants 
present in these equations ensure that the corrected image 
values are kept within a valid and visible range. The 
exponents were selected heuristically based on two example 
images. This gamma correction aids in contrast and color 
enhancement, so that the final corrected TLM image can be 
more easily segmented by the k-means algorithm and is 
visually informative to a user when displayed on a typical 
RGB computer monitor. 

C. Segmentation Options 

Three of the six segmentation options for ELM and five of 
the six for TLM images are based on clusters generated by 
the k-means algorithm. K-means clustering on a set of data 
starts by choosing a set of cluster centroids randomly from 
the data. Each data element (in our case, a pixel value) is 
then assigned to the cluster associated with the closest 
centroid, based on a distance measure between each point 
and each centroid. The k-means algorithm then re-computes 
the centroid location of each cluster, and then updates the 
cluster assignments of the data based on the new centroid 
locations. The algorithm iteratively updates the centroid of 
each cluster and the membership of each cluster until a local 
minimum solution has been found. For the ELM image, the 
algorithm is run on pixels in the image’s saturation 
component of its HSV representation. For the TLM image, 
the algorithm is run on the G channel of the RGB image. 

    
 

Figure 2: Left, original ELM image. Right, image with black marks 
segmented in green. 

 

    
 

Figure 3: Left, original TLM image. Right, background and color corrected 
TLM image, more clearly showing the underlying vascularity. 
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Wavelet analysis is also used to produce three additional 
segmentation options for ELM and one additional for TLM 
images. For the ELM image, another k-means algorithm is 
run on the high-high decomposition of the saturation channel 
to produce three levels of segmentation options. For TLM, 
the additional option includes a thresholded region where the 
green channel high-high wavelet component is near zero. 
Morphological operations are used to clean up the 
segmentations when necessary. Segmentation is also 
constrained through a priori knowledge that the lesion is 
likely centered in the image, and the TLM and ELM images 
must overlap. 

D. The Interactive Segmentation Interface 

Figure 4 shows the interactive segmentation selection 
interface. Based on the algorithms described above, six 
choices are given for both the ELM and TLM images for a 
lesion. In the top row, the user can view the original ELM 
and TLM images, and can also view the currently selected 
ELM and TLM boundaries superimposed on the same image 
for spatial comparison of the boundaries. The bottom row 
shows contour maps of both ELM and TLM segmentation 
options, providing a visual cue as to the similarity between 
the different selection options. Once the appropriate 
selections are made, the user can click “Next” to save the 
segmentation boundaries and then load the next lesion. 

Another beneficial aspect of our interactive system is the 
support for multiple users. Different analysts may score the 
same lesions, so the selections may be compared and 
improved with feedback from multiple individuals. The 

selections of a previous user may also be displayed on screen 
for comparison while a new user makes his or her selections. 
In this way, the additional input can refine the final selection 
of segmentation boundaries to approach the best solution. 
The thresholds used in the analysis algorithms may also be 
updated based on the selection feedback, thus using the 
advantages of adaptive learning to improve the segmentation. 
 Once the ELM and TLM images are segmented with 
respect to the pigmentation area and the blood volume area, 
the ratio between the two areas is computed. This ratio 
serves as a metric in an adaptive learning algorithm to 
differentiate the pathological classes of lesions.  

E. Additional Color and Texture Features 

Once the ELM and TLM areas were segmented using the 
interactive interface, an additional set of color, texture, and 
shape features were extracted from the pixels within the 
segmented areas to assist in the classification task. 

A total of 80 features were generated from the second 
order histogram, or, gray-level co-occurrence matrix of the R 
and G channels of the original TLM image, and the S and V 
channels of the ELM image in HSV space. Such features 
include contrast, correlation, energy, and homogeneity, 
evaluated over five offset distances [4]. Principal Component 
Analysis (PCA) was then used to reduce the number of these 
features to 16 so as to reduce dimensionality and minimize 
overfitting of the data, while still keeping relevant feature 
information. An additional 160 features were calculated from 
the mean and variance of wavelet coefficients of the high-
high and low-low wavelet packet decompositions for two 

 
 

Figure 4: The Interactive Segmentation Interface 
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levels in the multichannel ELM and original TLM images. 
PCA was used again to reduce the number of wavelet 
features to only ten. Morphological features (eccentricity, 
solidity, extent, perimeter, and circularity) were also 
extracted from both the ELM and TLM region boundaries, 
providing ten additional features. 

The GLCM, wavelet, and region boundary features were 
joined with the ELM area and the TLM/ELM ratio, for a 
total set of 38 extracted features. Still, the classification 
ability of good features may be clouded by noisy features 
with poor or no classification ability. Some subset of features 
is thus desirable for improved classification. Hence, we 
utilized a genetic algorithm to quickly find an optimal subset 
of the 38 features. Chromosomes in the GA were defined to 
be binary ‘flags’ which indicate if an individual feature 
should be included or ignored in classification. 

III. RESULTS 

A total of 81 lesions were processed using our novel 
segmentation interface to find the TLM/ELM ratio. 
Segmentation and selection took only a matter of seconds for 
each lesion. These lesions had been pathologically evaluated 
according to the severity of the dysplasia, and we grouped 
them into three classes: Mild, Moderate/Severe, and 
Malignant Melanoma. Lesion classes included both 
compound melanocytic nevi and junctional melanocytic nevi.  
 The mean and standard deviation of the ratios within each 
of the three classes were calculated (see Table I). There 
exists a clear, gradually increasing trend in the average ratio 
from mild to malignant lesions, thus confirming the 
relationship between lesion vascularity and dysplasia, and 
indicating that our methodology, image processing and 
segmentation algorithms can successfully detect and 
highlight this trend. We performed an ANOVA test on the 
three classes to statistically evaluate the differences in means 
observed. The p value indicates that the trend is significant 
(p = 0.0058). Our statistical significance and the separability 
of the classes shows a good improvement over previous 
work where the significance was lower and the means 
between classes were much closer together [1]. 

A. Support Vector Machine Classification 

A learning based Support Vector Machine (SVM) 
classifier was constructed to classify lesions into the different 
grades of dysplasia based on the color corrected images and 
segmentations obtained using our interactive interface. A 
60% random selection of lesions was used for training the 
SVM, while the other 40% was used for testing the classifier. 

This procedure was performed 10 times to find the average 
result, each time with a different random training and test set. 
The fitness function for the GA search for an optimal feature 
subset utilized a simple linear kernel for the SVM to 
determine how well the features flagged by each 
chromosome classify the data. 

After the GA had finished running, a total of 13 features 
were selected out of the original 38: the TLM/ELM ratio, six 
wavelet PCA components, four GLCM PCA components, 
TLM solidity, and TLM perimeter. Independent runs of the 
GA with different random seeds confirmed this same 
selection of features. It is clear that lesions with a large 
TLM/ELM ratio, high wavelet and GLCM activity, and large 
TLM perimeter are more likely to be classified as severe or 
malignant lesions. Smoother, smaller, and homogeneous 
lesions are more likely to be classified as mild.  

Classification accuracy can be improved slightly through 

use of an RBF kernel 2exp( || ||) )( ,i ij jK  x xx x  in the 

SVM with γ=10-5 and cost of error C=104.5. These 
parameters were used along with the 13 selected best 
features from the GA for a final SVM classification on the 
data. The classification was repeated 10 times, to find an 
average test accuracy of 81.0% and average training 
accuracy of 90.4%.  

IV. CONCLUSIONS 

Our proposed algorithm shows much promise in the ability 
to classify the different grades of skin lesion dysplasia. Our 
TLM background and color correction algorithm along with 
our lesion segmentation algorithm and interactive interface 
are clearly able to highlight the increase in vascularity 
present in increasingly dysplastic lesions. The trend we 
observe in the TLM/ELM ratio is highly significant. 
Classification of lesions using SVM shows good promise in 
grading the specific severity of lesion dysplasia, with an aim 
towards grouping lesions into classes where appropriate 
action can be taken by a dermatologist. These tools and 
methods would be useful to such a dermatologist as 
additional information to assist in the decision to biopsy. Our 
goal in the future is to improve our classification results 
through the intelligent selection of other distinguishing 
features using multispectral imaging to reliably classify our 
three levels of dysplastic skin lesions. 
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Table I: Mean (  ) and Standard Deviation ( ) of Lesion Classes 

 
Class N   
Mild 21 1.13 0.20 
Moderate/Severe 52 1.26 0.39 
Malignant Melanoma 8 1.63 0.50 
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