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Abstract— Recent advances in multi-parameter MR brain 
imaging has enabled multi-class tissue characterization for better 
quantitative analysis and understanding brain disorders and 
pathologies. This paper presents a maximum likelihood based 
method for multi-class segmentation that utilizes spatio- 
frequency features obtained from wavelet analysis along with the 
multi-parameter measurements. Results on MR brain images of a 
patient with stroke are presented.  
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I.  INTRODUCTION  
Multi-class segmentation among conventional MRI, fMRI and 
DTI brain images for specific volumes of interests provides 
tissue characterization with associated pathologies for 
important quantitative analysis for diagnosis as well 
therapeutic intervention. Fusion of anatomical, functional and 
diffusion information usually leads to multi-dimensional data 
sets leading to analysis of local regions that can be obtained 
from segmentation and detection approaches based on multi-
class classification.  
 
Multi-modality multi-parameter brain imaging has been of 
significant interest to acquire detailed information about the 
anatomical features and functional behavior of brain tissues. 
With advances in brain MR imaging, new methods for 
volumetric image registration, mapping and segmentation 
analysis have been largely investigated [1-4]. Along with 
imaging, multi-class tissue characterization methods for 
adaptive learning of associated pathologies has been a 
continued objective for applications in diagnosis and 
therapeutic protocols related to critical brain disorders and 
diseases [5-6].    
 
In this paper, an adaptive learning based multi-class 
segmentation method is presented that utilizes voxel-based 
measurements and spatio-frequency features obtained from 
wavelet analysis.   Results with multi-parameter MR brain 
images of a stroke patient are presented and shown that new 
classes with characteristic pathologies can be learned and 
classified for follow-up analysis.  

II. MULTI-CLASS CLASSIFICATION USING MAXIMUM 
LIKELIHOOD DISCRIMINANT FUNCTIONS  

Multi-parameter imaging and segmentation analysis leads to 
feature analysis with a set of spatially distributed multi-

dimensional data vectors of raw measurements and computed 
features. Total number of measurements and computed 
features allocated to each pixel in the image sets up the 
dimension d of the feature space.  Let us assume that we have 
an image of m rows and n columns with mn number of pixels 
to be classified into k number of classes. Thus we have mn 
data vectors { }mnjj ,..2,1; == xX  distributed in a d-
dimensional feature space. Thus each element of the data 
vector (i.e., pixel in the image) is associated with d-
dimensional feature vector. The purpose of multi-class 
classification is to find a mapping )(Xf  to map the input 

data vectors into k classes denoted by { }kicC i ,..2,1; == . 
In order, to learn such a mapping, we can use a training set S 
of cardinality l  with labeled input vectors such that  
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χ∈ix  are provided in the inner-product space of 

dR⊆χ  and { }kCi ,...,1=∈ γ the corresponding 
class or category label. 

 
As shown in Equation (1), there is a pair relationship of the 
assignment of each input pixel X to a class C. Let us assume 
that each class ic  model obtained from the training set has a 

mean vector iμ  and a co-variance represented by ∑i
such 

that  
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where i=1,2,…k; and j=1,…, n; n is the number of pixel 
vectors  in the ith class, and xj  is the  jth of n multidimensional 
vectors that comprise the class. The dimension of xj 
corresponds to the number of image modalities used in the 

analysis. The covariance matrix of class i, ,ˆ
iΣ  is 

 ( )( )t
ij

j
iji n

μμ ˆˆ
1

1ˆ −−
−

=∑ ∑ xx  (3) 

FrA1.2Proceedings of the 4th International
IEEE EMBS Conference on Neural Engineering
Antalya, Turkey, April 29 - May 2, 2009

978-1-4244-2073-5/09/$25.00 ©2009 IEEE 222



For developing an estimation model [1-3], let us assume that 
the image to classify is a realization of a pair of random 
variables{ }mnmn XC , ; where Cmn is the class of the pixel mn. 
Cmn represents the spatial variability of the class in the image 
and can take the values in a discrete set {1, 2, …, k}. Xmn is a 
d-dimensional random variable of pixel mn describing the 
variability of measurements for that pixel. Xmn describes the 
variability of the observed values x in a particular class. Given 
that Cmn = i, (i=1,2,…k) the distribution of Xmn is estimated to 
obey the general multivariate normal distribution described by 
the density function 
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where x is a d-element column vector, μ̂ i is a d-element 
estimated mean vector for the class i calculated from the 
training set, ∑̂ i is the estimated d×d covariance matrix for 
class i also calculated from the training set, and d is the 
dimension of multi-parameter or feature vector. 
 
For Maximum Likelihood based discrminant analysis to assign 
a class to a given pixel in the image [1-4].  For each pixel, four 
transition matrices Pr(m,n) = [pijr(m,n)] can be estimated, 
where r is a direction index (following 4 spatial connectedness 
directions in the image) and pijr(m,n) are the transition 
probabilities defined by 
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A generalized estimation of transition probabilities 
for classes can be obtained using b images in the 
training set and averaged over small neighborhood 
of h pixels around the pixel mn as 
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where Σb{pix | CP} denotes the number of pixels with the 
property CP in the images used in the training set used to 
generate the model and Σn represents the number of pixels 
with the given property in the pre-defined neighborhood.  

 
The equilibrium transition probabilities can then be estimated 
using a similar procedure as 
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The probability of a pixel, mn belonging to class i given the 
characteristics of the pixels in the neighborhood of mn can 
now be defined as 
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Pixels are classified based on the class that maximizes. It is 
important to develop an efficient data vector for use in 
classification method. Within the neighborhood of pixel mn, 
both direct measurements from multi-parameter imaging 
protocol as well as computed spatio-frequency features as 
obtained from wavelet analysis  

III. MODEL AND FEATURE EXTRACTION 
The model developed in [6] employed 15 brain tissue classes 
instead of the commonly used set of four classes, which were 
of clinical interest to neuroradiologists for following-up with 
patients suffering from cerebrovascular deficiency (CVD) 
and/or stroke. The model approximates the spatial distribution 
of tissue classes by a Gaussian Markov random field and uses 
maximum likelihood method to estimate the class probabilities 
and transitional probabilities for each pixel of the image. 
Multi-parameter MR brain images with T1, T2, proton density, 
Gd+T1, and perfusion imaging were used in segmentation and 
classification. In the development of the segmentation model, 
true class-membership of measured parameters was 
determined from manual segmentation of a set of normal and 
pathologic brain images by a team of neuroradiologists.  
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An initial set of 15 tissue classes, as shown in Table 1 was 
identified by the neuroradiologist. Gray matter was divided 
into superficial and deep gray mater structures because 
pathologic processes often discriminate between involvement 
of the superficial cortical or deep basal ganglia. The deep gray 
matter was further divided into four classes, caudate head, 
putamen, globus pallidus, and thalamus. White matter was 
divided into three classes: superficial white matter and two 
deeper white matter tracts, the corpus callosum and the 
internal capsule. The superficial white matter consisted 
primarily of white matter within the cortical pathways of the 
centrum semiovale. The CSF spaces were divided into two 
classes based on the ventricular system. The first class was 
that of the CSF contained within the ventricular system and 
the second class was for CSF outside the ventricular system 
(within the extra-axial spaces). This selection is based on the 
understanding that CSF within the ventricular system may 
have some signal variation due to the influence of pulsatile 
blood flow. 
 

CLASS NUMBER Color Code Class Name 

C1 White White Matter 
C2 Yellow Corpus Callosum 
C3 Gray Superficial Gray 
C4 Blue Green Caudate 
C5 Blue Thalamus 
C6 Light Blue Putamen 
C7 Dark Blue Globus Pallidus 
C8 Light Cream Internal Capsule 
C9 Light Violet Blood Vessel 

C10 Dark Violet Ventricle 
C11 Dark Green Choroid Plexus 
C12 Green Septum Pellucidium 
C13 Pale Green Fornices 
C14 Orange Extraaxial Fluid 
C15 Pale Violet Zona Granularis 

 
 

Table 1. List of classes used in proposed classification scheme.  
 
 

New Classes 
# 

Name 

C16 Superficial gray-edema (red gray) 
C17 Infarction (red) 
C18 Abnormal white matter (rose) 
C19 Internal capsule/edema (cream rose) 
C20 Putamn edema (blue rose) 
C21 Globus pallidus/edema (blue violet) 

 
 

Table 2: New 6 Pathological classes learned through the MAS 
method. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. A schematic flow chart of the multi-parameter 
segmentation method [cref. 5] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. From Top left clockwise:  Proton Density MR slice 
brain image of a patient with 48 hours after the stroke, 
Perfusion MR image, manual segmentation by 
neuroradiologists, and results of automatic segmentation 
method. 
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The feature vector from raw images (T1, T2, PD, Gd, 
Perfusion) was then augmented with coefficients obtained 
from the wavelet decomposition. Three-level wavelet 
decomposition was used using Daubechies dB8 wavelet [7-8].  
 
Using the Maximum Likelihood discriminant function method 
described above, MR brain images were analyzed and 
segmented into 15 classes using multi-class classification 
approach.  Five complete sets of MR T1-weighted, T-2 
weighted, Proton Density, Gd+T1-weighted and Perfusion 
brain images were used to determine the class signatures. 
These images were obtained at 1 mm interslice and 5 mm 
intra-slice resolution. The images with no observed pathology 
were used in manual classification by two expert 
neuroradiologists for a 15-class classification. After the 
signatures were created using the complete feature vector 
including raw data and computed wavelet coefficients, a new 
data set of respective images from a patient with stroke was 
analyzed using the signature database. Figure 1 shows a 
flowchart of the classification process.  

IV. RESULTS AND DISCUSSION 
Figure 2 shows PD and Perfusion MR brain images of the 
patient with stroke in the top row. The bottom row shows 
results of automatic classification with 4x4 pixel probability 
cell size and 4 pixel wide averaging along with a manual 
segmentation that was obtained using two neuroradiologists for 
comparison. Table 2 shows new classes that were creted using 
the above described method along with it pathological 
classification.  

It can be seen that new classes relevant to the patghology were 
learned by the presented method. The contribution and 
significance of spatio-frequency information obtained from the 
wavelet decomposition  needs to be further investigated for its 
robustness in classification of pathology.   
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